Crimson Performance: 56 weeks later

On becominag a Jack of all trades

Ce h Jose Juan Palacios-Perez
IBM UK

Crimson: reactor (share nothing) OSD architecture

ObjectStore

Messenger PG ‘ k
| | | == 4>
R Resourt Resources
Classic: @ | E : é G

Reactor thread 0 | Memory 0 |

Messenger PG

Crimson: reactor (share nothing) OSD architecture

Crimson is engineered to be a high-performance Object Storage Daemon (OSD)
optimized for fast storage devices such as NVMe

Kernel Bypass: Direct communication with networking and storage devices that
support polling, eliminating the overhead of kernel involvement.

- Shared-Nothing Architecture: Minimizes lock contention, ensuring smoother
operation and higher performance.
Computational Efficiency: Balances load across multi-core systems, enabling each
core to handle the same volume of I/O with reduced CPU usage.

e CPU core pinning to reactor strategy

Crimson progress after 56 weeks

e Robustness: Over 100 pull requests have been merged

e Coroutines: (support in C++20) any new code added to Crimson is highly prioritised to be
implemented with coroutines.

e Seastar Reactor Options: exposed some of these options as Ceph configurables

e SeaStore optimisations: conduct extensive testing, gain a deeper understanding of system
behaviors, and prioritize addressing the most impactful problems

e Partial Reads PR
e Cache MD during cleanup

e Periodic status reports: for development and optimization purposes and are continuously evolving.

Crimson Performance

losd-32fio-randread losd-32fio-randwrite

100 100
o 10 - 10 - /\
£] E
> >
2 2
o ()
- -
3, ! 5
0.1 T T T T T T T 0'1 T T T T T
o 8 2, 2z < 2, % 2, % o . % > % % 4
° % 2 % B2 % 2 % @ ¢ ¢ © % 0
IOPS (thousand) IOPS (thousand)
[0SD (build ble4a2b) | [OSD (build ble4a2b) |
Beastore-dual e Seastore-single vt Classic . | ISeastore-duaI e Seastore-single wib Classic |

» Crimson performs better than Classic OSD for random read 4k
* Opportunity to improve for random write 4k

CPU core reactor
pinning

CPU core reactor pinning

e Delivered PR 60822 to select the CPU reactor pining strategy:
e OSD Balanced
e NUMA separated

e Caveat: only for Intel HT architectures, not tested on AMD SMT

e Detailed Ceph Performance Blog https://ceph.io/en/news/blog/2025/crimson-
balance-cpu-part1/

e Simplified and improved by Sam Just in PR 63137

CPU core reactor pinning e

hboard --cyanstore —-redirect-output --crimson --crimson-smp 3 --no-restart =--crimson-balance-cpu osd

The following is the corresponding CPU distribution:

Loading 3 .out files ...

== 0sd_0_cyan_3osd_3react_newbal_threads.out ==

= osd_1_cyan_3osd_3react_newbal_threads.out ==

= osd_2_cyan_3osd_3react_newbal_threads.out ==
Socket 0

+
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

|OP Cost
estimation

|OP cost estimation for Crimson

Query from Kyle Bader
I0OPkH~

(n x 2.2GHz X ;)

e Crimson performance metrics revisited I0P per GHz =
(equation showing the estimations)

e Code (mostly Python) to collect, filter, transform and present (as Pandas data frames) the OSD
reactor performance measurements

e Public project repo https://github.com/perezjosibm/ceph-aprg/tree/main

e Production of custom performance reports, discussions on the weekly Crimson call
(charts and sections of the report)

|OP cost estimation for Crimson

Classic vs Crimson 4k Random workloads (Single OSD) Classic vs Crimson 64k Sequential workloads (Single OSD)

8 10000 ¢
1x10 3 E 0sD

0SD : :

1x107 1756853.51 :] Classic o

6 381943.13 Classic mmm—m | : 1000 Seastore

1x10 Seastore N |4 3 115.881 L=eastore /==
: 70.484

100 31.18

100000 ¥
10000 F
1000
100 ¢
10

1k

0.1

2132.15

940.34

MBs per GHz

10

IOP per GHz

0.1l

seqread64k seqwrite64k
randread4k randwrite4k Workload

Workload

These estimations are based on a dual-socket Intel(R) Xeon(R) Platinum 8276M CPU @ 2.20GHz
(56 cores each socket)

Crimson vs.
Asynchronous
messenger

Crimson vs Classic (Asynchronous) Messenger

e Performance testing of the Messenger component of the
OSD

Tall towers occur in code
path/stacks that involve
lambda resolution of the
asynchronous computation
in Seastar (future/
promises)

e Implemented a custom test driver trigger script to execute
the messenger benchmark (written by Yinxing Cheng as a
standalone) to traverse over:

e Number of clients, number of CPU cores

e NUMA Separated vs Balanced CPU pinning

ccccccccc

e Monitor and collect measurements from Seastar

e Analysis based on flame graphs

Essentially, each code
stack is encoded as a
multiset (item with number
of occurrences)

e Implemented a filter to deal with huge towers in
the flame graphs

e |dentifying bottlenecks and recommendations for

optimisations on going

Crimson vs Classic (Asynchronous) Messenger

Crimson Asynchronous

msgr_async_bal_vs_sep_client_des.json

msgr_crimson_bal_vs_sep_client_des.json

CPU Balance
—&— balanced
~# - separated

/ g CPU Balance
[—e— balanced
- separated

16180 24 28 32
Clients

40

24 8 161820 24 28 32 40 56
Clients

Code
Contributions to
the Ceph
Benchmark
Toolkit

CBT PRs

e Defined a ‘workload’ section in the test plan .yaml
schema for modular test execution (PR 306)

e Implemented an automated unit test generator to support
regression testing when refactoring the exiting code (PR
320)

e Based on the notion of object serialisation
e Extending the documentation (PR 316)
e Extending the tools in the Crimson folder

e Collect, transform, filter data from measurements
(monitoring) and present as Pandas data frames

= ceph/ceph.io Add blog entry Crimson balance CPU

eb 10 - A

i ceph/cbt First version of the report generator. Add further tools. ' enhancement

osibm was merged on Jan 28

= ceph/ceph [vstart]: add --crimson-balance-cpu option to set CPU distribution policy

crimson Y documentation) | performance r

0822 by perezjosibm was merged on Feb 10 - Approved 6 of 14 tasks

i ceph/cbt Update documentation. Minor reformating on the fio-poarse-jsons.py

316 by perezjosibm was merged on Oct 1, 2024 + Approved

I~ ceph/cbt Integrate CPU utilisation in the response curve charts generated by f...

312 by perezjosibm was merged on Aug 15, 2024 - Approved

i ceph/cbt Add fio-parse-jsons.py tool to parse a set of json FIO files.

rged on Jun 10, 20 Approved

= ceph/ceph script/: add cpu-map.sh to aid manual selection of CPU cores for threads for

proﬁling crimson

57562 by perezjosibm was

- ceph/ceph vstart.sh: add options to set number of alien threads, and number of cpu

cores for alien threads crimson

Dy perezjosibm was merged on Jun 17, 2024 - Approved

i~ ceph/cbt Extend librbdfio.py with a new workloads block. Add minor fixes.

306 by perezjosibm was merged on Jul 23, 2024 - Approved

Future ldeas

Future ldeas

e Performance analysis of coroutines in Seastar

e Port to Crimson the https://github.com/taodd/cephtirace project on dynamic
latency monitoring (Dongdong Tao, Cephalocon 2023)

e Memory efficient atomic shared pointers: reduce contention, e.g. avoid shared
mutable state via the "blue/green deployment" pattern (Arthur O'Dwyer -
CppCon 2020)

Feedback from the Community

8 replies 7 . Q
N ¥y G
Samuel Just 4 Mar ©
That is an incredibly useful analysis! Is
bluestore restricted to the same cores as the

reactor threads in these configurations?

Kyle Bader 10 Mar at 16:56
~ excellent, that was really fast @)

1 @&

