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Crimson: reactor (share nothing) OSD architecture

Classic:

Crimson:

Seastar Framework:
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Crimson is engineered to be a high-performance Object Storage Daemon (OSD) 
optimized for fast storage devices such as NVMe

• Kernel Bypass: Direct communication with networking and storage devices that 
support polling, eliminating the overhead of kernel involvement.


• Shared-Nothing Architecture: Minimizes lock contention, ensuring smoother 
operation and higher performance.


• Computational Efficiency: Balances load across multi-core systems, enabling each 
core to handle the same volume of I/O with reduced CPU usage. 

● CPU core pinning to reactor strategy

Crimson: reactor (share nothing) OSD architecture
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● Robustness: Over 100 pull requests have been merged

● Coroutines: (support in C++20) any new code added to Crimson is highly prioritised to be 
implemented with coroutines.

● Seastar Reactor Options: exposed some of these options as Ceph configurables

● SeaStore optimisations: conduct extensive testing, gain a deeper understanding of system 
behaviors, and prioritize addressing the most impactful problems

● Partial Reads PR

● Cache MD during cleanup

● Periodic status reports: for development and optimization purposes and are continuously evolving.

Crimson progress after 56 weeks
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Crimson Performance

• Crimson performs better than Classic OSD for random read 4k 
• Opportunity to improve for random write 4k 
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CPU core reactor 
pinning
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CPU core reactor pinning

● Delivered PR 60822 to select the CPU reactor pining strategy:

● OSD Balanced

● NUMA separated

● Caveat: only for Intel HT architectures, not tested on AMD SMT

● Detailed Ceph Performance Blog https://ceph.io/en/news/blog/2025/crimson-
balance-cpu-part1/

● Simplified and improved by Sam Just in PR 63137
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CPU core reactor pinning
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IOP Cost 
estimation
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Query from Kyle Bader

● Crimson performance metrics revisited  
(equation showing the estimations)

● Code (mostly Python) to collect, filter, transform and present (as Pandas data frames) the OSD 
reactor performance measurements 

● Public project repo https://github.com/perezjosibm/ceph-aprg/tree/main 

● Production of custom performance reports, discussions on the weekly Crimson call   
(charts and sections of the report)

IOP cost estimation for Crimson
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IOP cost estimation for Crimson

These estimations are based on a dual-socket Intel(R) Xeon(R) Platinum 8276M CPU @ 2.20GHz 
 (56 cores each socket)
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Crimson vs. 
Asynchronous 
messenger
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● Performance testing of the Messenger component of the 
OSD

● Implemented a custom test driver trigger script to execute 
the messenger benchmark (written by Yinxing Cheng as a 
standalone) to traverse over:

● Number of clients, number of CPU cores

● NUMA Separated vs Balanced CPU pinning

● Monitor and collect measurements from Seastar 

● Analysis based on flame graphs

● Implemented a filter to deal with huge towers in 
the flame graphs

● Identifying bottlenecks and recommendations for 
optimisations on going

Crimson vs Classic (Asynchronous) Messenger

Essentially, each code 
stack is encoded as a 
multiset (item with number 
of occurrences)

Tall towers occur in code 
path/stacks that involve 
lambda resolution of the 
asynchronous computation 
in Seastar (future/
promises)
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Crimson vs Classic (Asynchronous) Messenger
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Code 
Contributions to 
the Ceph 
Benchmark 
Toolkit
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● Defined a ‘workload’ section in the test plan .yaml 
schema for modular test execution (PR 306)

● Implemented an automated unit test generator to support 
regression testing when refactoring the exiting code (PR 
320)

● Based on the notion of object serialisation

● Extending the documentation (PR 316)

● Extending the tools in the Crimson folder

● Collect, transform, filter data from measurements 
(monitoring) and present as Pandas data frames

CBT PRs
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Future Ideas
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● Performance analysis of coroutines in Seastar

● Port to Crimson the https://github.com/taodd/cephtrace project on dynamic 
latency monitoring (Dongdong Tao, Cephalocon 2023) 

● Memory efficient atomic shared pointers: reduce contention, e.g. avoid shared 
mutable state via the "blue/green deployment" pattern (Arthur O'Dwyer - 
CppCon 2020) 

Future Ideas
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Feedback from the Community


