
Jose Juan Palacios-Perez 
IBM UK 

Crimson Performance: 56 weeks later
On becoming a Jack of all trades

2

Crimson: reactor (share nothing) OSD architecture

Classic:

Crimson:

Seastar Framework:

3

Crimson is engineered to be a high-performance Object Storage Daemon (OSD)
optimized for fast storage devices such as NVMe

• Kernel Bypass: Direct communication with networking and storage devices that
support polling, eliminating the overhead of kernel involvement.

• Shared-Nothing Architecture: Minimizes lock contention, ensuring smoother
operation and higher performance.

• Computational Efficiency: Balances load across multi-core systems, enabling each
core to handle the same volume of I/O with reduced CPU usage. 

● CPU core pinning to reactor strategy

Crimson: reactor (share nothing) OSD architecture

4

● Robustness: Over 100 pull requests have been merged

● Coroutines: (support in C++20) any new code added to Crimson is highly prioritised to be
implemented with coroutines.

● Seastar Reactor Options: exposed some of these options as Ceph configurables

● SeaStore optimisations: conduct extensive testing, gain a deeper understanding of system
behaviors, and prioritize addressing the most impactful problems

● Partial Reads PR

● Cache MD during cleanup

● Periodic status reports: for development and optimization purposes and are continuously evolving.

Crimson progress after 56 weeks

5

Crimson Performance

• Crimson performs better than Classic OSD for random read 4k
• Opportunity to improve for random write 4k

6

CPU core reactor
pinning

7

CPU core reactor pinning

● Delivered PR 60822 to select the CPU reactor pining strategy:

● OSD Balanced

● NUMA separated

● Caveat: only for Intel HT architectures, not tested on AMD SMT

● Detailed Ceph Performance Blog https://ceph.io/en/news/blog/2025/crimson-
balance-cpu-part1/

● Simplified and improved by Sam Just in PR 63137

8

CPU core reactor pinning

9

IOP Cost
estimation

10

Query from Kyle Bader

● Crimson performance metrics revisited  
(equation showing the estimations)

● Code (mostly Python) to collect, filter, transform and present (as Pandas data frames) the OSD
reactor performance measurements

● Public project repo https://github.com/perezjosibm/ceph-aprg/tree/main

● Production of custom performance reports, discussions on the weekly Crimson call  
(charts and sections of the report)

IOP cost estimation for Crimson

11

IOP cost estimation for Crimson

These estimations are based on a dual-socket Intel(R) Xeon(R) Platinum 8276M CPU @ 2.20GHz
 (56 cores each socket)

12

Crimson vs.
Asynchronous
messenger

13

● Performance testing of the Messenger component of the
OSD

● Implemented a custom test driver trigger script to execute
the messenger benchmark (written by Yinxing Cheng as a
standalone) to traverse over:

● Number of clients, number of CPU cores

● NUMA Separated vs Balanced CPU pinning

● Monitor and collect measurements from Seastar

● Analysis based on flame graphs

● Implemented a filter to deal with huge towers in
the flame graphs

● Identifying bottlenecks and recommendations for
optimisations on going

Crimson vs Classic (Asynchronous) Messenger

Essentially, each code
stack is encoded as a
multiset (item with number
of occurrences)

Tall towers occur in code
path/stacks that involve
lambda resolution of the
asynchronous computation
in Seastar (future/
promises)

14

Crimson vs Classic (Asynchronous) Messenger

15

Code
Contributions to
the Ceph
Benchmark
Toolkit

16

● Defined a ‘workload’ section in the test plan .yaml
schema for modular test execution (PR 306)

● Implemented an automated unit test generator to support
regression testing when refactoring the exiting code (PR
320)

● Based on the notion of object serialisation

● Extending the documentation (PR 316)

● Extending the tools in the Crimson folder

● Collect, transform, filter data from measurements
(monitoring) and present as Pandas data frames

CBT PRs

17

Future Ideas

18

● Performance analysis of coroutines in Seastar

● Port to Crimson the https://github.com/taodd/cephtrace project on dynamic
latency monitoring (Dongdong Tao, Cephalocon 2023)

● Memory efficient atomic shared pointers: reduce contention, e.g. avoid shared
mutable state via the "blue/green deployment" pattern (Arthur O'Dwyer -
CppCon 2020) 

Future Ideas

19

Feedback from the Community

